Consider an $n$-dimensional function $z=f(\mathbf{x})$ defined by $f: D\subseteq \R^n \to \R$, where $\mathbf{x}=(x_1, x_2, \ldots, x_n)$ is an $n$-tuple of real numbers. Also consider a point $\mathbf{a} = (a_1, a_2, \ldots, a_n)$ defined in the domain $D\subseteq\R^n$.
Consider an $n$-dimensional function $z=f(\mathbf{x})$, $f: D\subseteq \R^n \to \R$, where $\mathbf{x}=(x_1, x_2, \ldots, x_n)$ is an $n$-tuple of real numbers. Assume that the function is defined at a point $\mathbf{a} = (a_1, a_2, \ldots, a_n)\in D\subseteq\R^n$.
The Hessian Matrix. Consider a function $z=f(\mathbf{x})$ and $\mathbf{x}$ defined as before, and let $f$ be a function whose second partial derivatives are continuous on its domain $D$. Consider also a point $\mathbf{a}=(a_1,a_2,...,a_n)\in D\subseteq \R^n$. By then, the matrix
is called the Hessian matrix of the function $f$ at point $\mathbf{a}$. Since $f$ has continuous second partial derivatives, $H_f(M)$ must be a symmetric square matrix; that is, $H_f(\mathbf{a})=H_f(\mathbf{a})^{\mathsf{T}}$.
Quadratic Form. A quadratic form, to put simply, is just a second-degree multi-variable polynomial such as
One interesting about quadratic forms is that every symmetric matrix defines a quadratic form; that is, given that $\mathbf{A} = [a]_{ij}$, the polynomial
will results in a quadratic form without requiring us to combining terms. Therefore, $H_f(\mathbf{a})$ can most definitely be treated as a matrix associated with a quadratic form.
Definite Matrix. A symmetric real matrix $\mathbf{A}$ is called positive definite if the associated quadratic form $$\phi( \mathbf{x})=\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$$ is positive for every column ($n\times 1$), non-zero vector $\mathbf{x}$ in $\R^n$. Similarly, if $\phi(\mathbf{x})$ only yields negative values, then $\mathbf{A}$ is called negative definite. Finally, if $\phi$ produces both negative and positive values, then $\mathbf{A}$ is said to be indefinite. There are also other cases such as positive semi-definite or negative semi-definite matrices. In general,
Sub-matrices. Given an $n\times n$ matrix $\mathbf{A}$ with $(i,j)$-th entry, where $a_{ij}=a_{ji}$. Let $A^{(k)}$ denote the $k\times k$ submatrix taken from the top left corner of $\mathbf{A}$. These matrices are called major sub-matrices of $A$. That is,
In particular,
Let $\Delta_k=\det(\mathbf{A}^{k})\;,1\leq k\leq n$. For instance, $\Delta_1=a_{11}$ and $\Delta_n =\det(\mathbf{A})$.
The General Second Derivative Test. To identify all the stationary (and critical points) of $f(\mathbf{x})$ and test if they are the extrema of $f$, we follow the following procedure:
Points | $f_{xx}(x_0,y_0)$ | $f_{xy}(x_0,y_0)$ | $f_{yy}(x_0,y_0)$ | $\Delta_2=f_{xx}f_{yy}-f_{xy}^2$ | Conclusion |
$(0,1)$ | $0$ | $2$ | $0$ | $-4<0$ | Saddle point at $(0,1,0)$ |
$(0,-1)$ | $0$ | $2$ | $0$ | $-4<0$ | Saddle point at $(0,-1,0)$ |
$(1,0)$ | $0$ | $2$ | $0$ | $-4<0$ | Saddle point at $(1,0,0)$ |
$(-1,0)$ | $0$ | $2$ | $0$ | $-4<0$ | Saddle point at $(-1,0,0)$ |
$\left(\dfrac{1}{\sqrt{2e}},\dfrac{1}{\sqrt{2e}}\right)$ | $2>0$ | $0$ | $2$ | $4>0$ | Local minimum, $f_{\min}=-\frac{1}{2e}$ |
$\left(\dfrac{1}{\sqrt{2e}},-\dfrac{1}{\sqrt{2e}}\right)$ | $-2<0$ | $0$ | $-2$ | $4>0$ | Local maximum, $f_{\max}=\dfrac{1}{2e}$ |
$\left(-\dfrac{1}{\sqrt{2e}},\dfrac{1}{\sqrt{2e}}\right)$ | $-2<0$ | $0$ | $-2$ | $4>0$ | Local maximum, $f_{\max}=\dfrac{1}{2e}$ |
$\left(-\dfrac{1}{\sqrt{2e}},-\dfrac{1}{\sqrt{2e}}\right)$ | $2>0$ | $0$ | $2$ | $4>0$ | Local minimum, $f_{\min}=-\frac{1}{2e}$ |
Points | $f_{xx}(x_0,y_0)$ | $\Delta_2(x_0,y_0)$ | Conclusion |
$(0,1)$ | $2>0$ | $4>0$ | Relative minimum, $f_{\min}=-1$ |
$(\pi,-1)$ | $2>0$ | $4>0$ | Relative minimum, $f_{\min}=-1$ |
$(2\pi,1)$ | $2>0$ | $4>0$ | Relative minimum, $f_{\min}=-1$ |
$(\frac{\pi}{2},0)$ | $0$ | $-4<0$ | Saddle point at $(\pi/2,0,0)$ |
$(\frac{3\pi}{2},0)$ | $0$ | $-4<0$ | Saddle point at $(3\pi/2,0,0)$ |
Points | $f_{xx}(x_0,y_0)$ | $\Delta_2(x_0,y_0)$ | Conclusion |
$(0,0)$ | $-2<0$ | $8>0$ | Local maximum, $f_{\max}=0$ |
$(0,1)$ | $-2<0$ | $-16<0$ | Saddle Point at $(0,1,-1)$ |
$(0,-1)$ | $-2<0$ | $-16<0$ | Saddle Point at $(0,-1,-1)$ |
$\left(\frac{1}{2},0\right)$ | $4>0$ | $-16<0$ | Saddle Point at $(\frac{1}{2},0,-\frac{1}{8})$ |
$\left(\frac{1}{2},1\right)$ | $4>0$ | $32<0$ | Local minimum, $f_{\min}=-\frac{9}{8}$ |
$\left(\frac{1}{2},-1\right)$ | $4>0$ | $32>0$ | Local minimum, $f_{\min}=-\frac{9}{8}$ |
$\left(-\frac{1}{2},0\right)$ | $4>0$ | $-16<0$ | Saddle Point at $(-\frac{1}{2},0,-\frac{1}{8})$ |
$\left(-\frac{1}{2},1\right)$ | $4>0$ | $32>0$ | Local minimum, $f_{\min}=-\frac{9}{8}$ |
$\left(-\frac{1}{2},-1\right)$ | $4>0$ | $32>0$ | Local minimum, $f_{\min}=-\frac{9}{8}$ |
$m$ | $n$ | $\Delta_2(x,y)$ | $f_{xx}(x_0,y_0)$ | Conclusion |
Even | Even | $\Delta_2=-16\cos\left(-\dfrac{\pi}{6}\right)=-8\sqrt{3}<0$ | ~ | Saddle Point |
Odd | Odd | $\Delta_2=16\cos\left(\dfrac{7\pi}{6}\right)=-8\sqrt{3}<0$ | ~ | Saddle Point |
Even | Odd | $\Delta_2=16\cos\left(-\dfrac{\pi}{6}\right)=8\sqrt{3}>0$ | $\sqrt{3}+2>0$ | Local Minimum, where $$f_{\min}=m\pi-\frac{\pi}{6}-2-\sqrt{3}$$ |
Odd | Even | $\Delta_2=-16\cos\left(\dfrac{7\pi}{6}\right)=8\sqrt{3}>0$ | $-\sqrt{3}-2<0$ | Local maximum, where $$f_{\max}=m\pi+\frac{\pi}{6}+2+\sqrt{3}$$ |